
Chat2Chart

By 
Anirudh 
Abhijeet



Idea ● Goal 
○ Build an interface where users can interact with their 

data using natural language processing.
● Inspiration:

○ The concept is similar to Jupyter Notebook but with a 
focus on natural language instead of manually loading 
data into Pandas for analysis.

● Core Features:
○ Users can perform data analysis by conversing in 

natural language, eliminating the need for coding 
skills.

○ AI agent interprets user queries, breaks them down 
into simple steps, and executes the necessary Python 
code for data analysis.

● Visualization Options:
○ Users can request specific chart types (line, bar, 

scatter, etc.) to visualize their data.
● Additional Functionality:

○ Users can ask for explanations about their data, and 
the AI assistant will provide clear insights.Planned 
feature: The ability to publish dashboards directly from 
the platform.



Project Approach & 
Technologies Used

● Project Approach:
○ Started from scratch, avoiding LangChain and 

Llama-Index.
○ Goal: Build a custom pandas DataFrame agent for 

interacting with tabular data.
● Technologies Used:

○ Streamlit: For building the user interface and 
interacting with the model.

○ OpenAI (for LLM): To process natural language 
queries and generate insights.

○ Pandas: For managing and analyzing tabular data 
within the project.

○ Cursor & Claude Sonnet: Used for assistance in 
implementing the DataFrame agent and refining 
the process.



Implementation ● Creating the Pandas DataFrame Agent:
○ Used Claude Sonnet in Cursor to build the 

DataFrame agent from scratch.
○ After multiple iterations, successfully created a 

working agent tailored for our use case.
● Connecting to the LLM:

○ Initially wrote rough code with the 
autocompletion feature for prompts.

○ Connected the agent to the OpenAI LLM, enabling 
natural language queries on data.

● Handling Image Output:
○ Encountered difficulties in generating visual 

outputs after the agent execution.
○ Use chat feature in Cursor, which helped finalize 

the image output implementation.
● Outcome:

○ The implementation works, though still not 
perfect.

○ Cursor and Claude Sonnet played crucial roles in 
speeding up the development process and 
guiding through challenges.



Current Challenges ● Conversation Memory:
○ Difficulty in remembering previous 

conversations or passing context to the LLM 
during session.

● Complex Queries:
○ Challenges with handling multi-step queries 

that require generating multiple lines of 
Python code.

● Expanding Features:
○ Developing the ability to publish a dashboard 

directly from the application.
○ Attempting to integrate Streamlit bar charts 

and other visual features into the interface.
●



Next Steps ● Transitioning from Streamlit to Next.js:
○ Moving from a Streamlit demo to a more 

scalable, production-ready platform using 
Next.js.

○ Aiming for better performance, UI/UX, and 
flexibility with a Next.js-based architecture.

● Future Improvements:
○ Optimizing the LLM’s handling of complex, 

multi-line code queries.
○ Enhancing the user interface with more 

robust data visualization tools.
○ Integrating dashboard publishing and other 

advanced features into the Next.js 
application.

● Expand support for more data file formats (e.g., 
JSON, XML, SQL databases).


